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ABSTRACT
Computing the personalized PageRank vector is a fundamental

problem in graph analysis. In this paper, we propose several novel

algorithms to efficiently compute the personalized PageRank vector

with a decay factor 𝛼 based on an interesting connection between

the personalized PageRank values and the weights of random span-

ning forests of the graph. Such a connection is derived based on a

newly-developed matrix forest theorem on graphs. Based on this,

we present an efficient spanning forest sampling algorithm via

simulating loop-erased 𝛼-random walks to estimate the personal-

ized PageRank vector. Compared to all existing methods, a striking

feature of our approach is that its performance is insensitive w.r.t.

(with respect to) the parameter 𝛼 . As a consequence, our algorithm

is often much faster than the state-of-the-art algorithms when 𝛼

is small, which is the demanding case for many graph analysis

tasks. We show that our technique can significantly improve the

efficiency of the state-of-the-art algorithms for answering two well-

studied personalized PageRank queries, including single source

query and single target query. Extensive experiments on seven

large real-world graphs demonstrate the efficiency of the proposed

method.
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1 INTRODUCTION
Given a graph 𝐺 = (𝑉 , 𝐸), two nodes 𝑠, 𝑡 ∈ 𝑉 , and a decay factor 𝛼 ,

the Personalized PageRank (PPR) 𝜋 (𝑠, 𝑡) is defined as the probability
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that a random surfer starts from 𝑠 stops at 𝑡 when applying an 𝛼-

random walk, where a random surfer randomly stops at the current

node with probability 𝛼 or travels to a neighbor of the current

node with probability 1 − 𝛼 . Clearly, by this definition, the PPR

value 𝜋 (𝑠, 𝑡) naturally measures the importance of node 𝑡 w.r.t.

(with respect to) 𝑠 . That is, after randomly surfing, if 𝑠 stops at 𝑡

with a high probability, then 𝑡 is important to 𝑠 . Based on such

a nice property, PPR has been widely used in web search related

applications [28].

However, a recent trend is to employ PPR for many graph analy-

sis tasks, such as graph clustering [4, 41], graph embedding [51], and

graph neural networks [13]. In particular, PPR values can express

the graph structure information by considering all paths between

two nodes, which can be viewed as a type of information prop-

agation procedure across the graph [42]. This new trend brings

significant efficiency and effectiveness improvement to graph anal-

ysis tasks, but also introduces new computational challenges.

The new applications of PPR in graph analysis often require

a small decay factor 𝛼 . For example, for local graph clustering

application, the optimal parameter setting for the decay factor is

𝛼 = 0.01 as reported in [41]. The same optimal parameter setting of

𝛼 can also be found in graph neural network application [13]. The

reason could be that with a small 𝛼 , the 𝛼-random walk can explore

a large portion of the graph, thus can obtain more information

compared to the case with a large 𝛼 . But unfortunately, all existing

algorithms for computing the PPR values with a small 𝛼 (e.g., 𝛼 =

0.01 ) are not very efficient on large graphs, which motivates us to

develop more efficient algorithms to handle the small 𝛼 case.

Specifically, previous PPR computation methods can be divided

into two categories, including deterministic methods [3, 4, 10, 28]

and Monte Carlo algorithms [7, 33]. In our case, of particular in-

terest is the Monte Carlo algorithm. To estimate the 𝜋 (𝑠, 𝑡) value,
a classic Monte Carlo algorithm first simulates 𝛼-random walks

from 𝑠 and then counts the fraction of walks that terminates at 𝑡

as an estimation. However, the major drawback of this method is

that it only cares about the end-node of each random walk, and

other nodes in the random walk are totally ignored. Moreover, the

efficiency of such a method is heavily dependent on the decay factor

𝛼 . For a small 𝛼 , such a classic Monte Carlo method is inefficient,

because it often takes a long time to simulate an 𝛼-random walk in

this case.

To tackle the issues, we propose a novel solution based on an

interesting connection between PPR and random spanning forests

of the graph. We first establish a novel PageRank matrix forest

theorem, which gives a new combinatorial explanation of PPR value

𝜋 (𝑠, 𝑡) as the probability that 𝑠 is rooted in 𝑡 in a rooted random
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spanning forest.
1
Such a combinatorial explanation motivates us to

design efficient PPR computation algorithms by sampling spanning

forests. To this end, we propose a new loop-erased 𝛼-random walk

technique to generate random spanning forests via extending the

classic Wilson algorithm [48]. Compared to the previous methods,

our spanning forest sampling based technique has several appealing

features: (1) each step in the 𝛼-random walk except loops provides

valuable information for estimating PPR values, and (2) the expected

running time of our technique will not grow rapidly as 𝛼 decreases,

thus it is insensitive w.r.t. 𝛼 .

We apply the newly-developed technique to improve previous

algorithms for answering two PPR queries: single source PPR query

and single target PPR query. For the single source PPR query, the

state-of-the-art algorithm is a two-stage algorithm [46, 49] that

combines deterministic forward push and Monte Carlo. Although

several optimizations are made to accelerate the deterministic for-

ward push stage [32, 49], there is little work focusing on optimizing

the Monte Carlo stage. In the Monte Carlo stage, all these methods

just simply simulates 𝛼-random walk, which is inefficient when

𝛼 is small. We show that our technique can improve the Monte

Carlo stage by replacing the 𝛼-random walk sampling with the

proposed random spanning forest sampling. Note that our random

spanning forest sampling technique is orthogonal to those opti-

mizations made on deterministic forward push [32, 49], thus they

can also be applied to optimize our solutions. For the single target

PPR query, the state-of-the-art algorithm is the backward push algo-

rithm [3]. Similarly, the backward push algorithm is also slow when

𝛼 is small especially for high-degree nodes. To overcome this issue,

we also propose a two-stage algorithm combining backward push

and sampling spanning forests. We show that our algorithm can

achieve a relative error guarantee in theory. Finally, we conduct

extensive experiments using 7 large real-world graphs to evalu-

ate our algorithms. The results show that (1) for the single source

PPR query, our best algorithm can achieve one order of magnitude

speedup over the state-of-the-art algorithm [49] on large graphs

when 𝛼 = 0.01, and (2) for the single target PPR query, our best

algorithm is around 3× faster than the state-of-the-art algorithm.

To summarize, the main contributions of this paper are as follows.

New theoretical results. We develop three novel matrix forest

theorems, based on which the PPR value 𝜋 (𝑠, 𝑡) between two nodes

𝑠 and 𝑡 can be explained as the probability that 𝑠 is rooted in 𝑡

in a random spanning forest. We show that the proposed matrix

forest theorems can be applied to develop an efficient algorithm to

estimate the PPR values by sampling spanning forests in a graph.

We believe that such a novel combinatorial explanation for the PPR

values could be of independent interest.

New algorithms for PPR queries.We first propose a new algo-

rithm to sample spanning forests based on a loop-erased 𝛼-random

walk technique. We show that such a loop-erased 𝛼-random walk

technique is insensitive w.r.t. 𝛼 . Based on this technique, we develop

a new two-stage algorithmwhich combing forward push (backward

push) and spanning forest sampling to efficiently answer the single

source (target) PPR query.

1
A rooted spanning forest partitions the graph into several connected components

(each tree is a connected component). If a node 𝑠 is located in a tree that has a node 𝑡

as its root, we call that node 𝑠 is rooted in 𝑡 .

Extensive experiments.We conduct extensive experiments us-

ing 7 real-world graphs to evaluate the efficiency of the proposed

algorithms. The results show that our algorithms significantly out-

perform the state-of-the-art algorithms on all datasets. For repro-

ducibility purpose, the source code of this paper is released at

https://github.com/mhLeon/RSFPPR.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸,𝑊 ) be a weighted graph, where 𝑉 (𝑛 = |𝑉 |) is a set
of vertices, 𝐸 (𝑚 = |𝐸 |) is a set of edges, and𝑤𝑢𝑣 ∈𝑊 denotes the

weight of an edge 𝑒 = (𝑢, 𝑣). Denote by 𝐴, the adjacency matrix of

𝐺 with 𝐴𝑢𝑣 = 𝑤𝑢𝑣 if (𝑢, 𝑣) ∈ 𝐸, 𝐴𝑢𝑣 = 0 otherwise. Let 𝐿 = 𝐷 −𝐴
be the Laplacian matrix of 𝐺 , where 𝐷 is a diagonal matrix with

each entry 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 . For a node 𝑢 ∈ 𝑉 , the weighted degree of

𝑢, denoted by 𝑑𝑢 , is equal to 𝐷𝑢𝑢 . If the graph is unweighted, the

weighted degree is exactly equal to the number of neighbors. For

easy understanding of our results, we assume that the graph 𝐺 is

undirected in the following sections. It is important to note that the

main technique and all theoretical results presented in Section 3

and Section 4 still work for directed graphs.

Given a source node 𝑠 , a target node 𝑡 , and a decay factor 𝛼 ,

the personalized PageRank (PPR) of 𝑡 w.r.t. 𝑠 , denote by 𝜋 (𝑠, 𝑡), is
the probability that an 𝛼-random walk starting from 𝑠 terminates

at 𝑡 . Here an 𝛼-random walk is a random walk where in each

step the random walk stops at the current node with probability

𝛼 and travels to a random neighbor with probability 1 − 𝛼 . With

this definition, we mainly focus on two types of personalized PPR

computation problem in this paper.

Given a source node 𝑠 , the single source PPR query is to compute

𝜋 (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 . The answer of this query is a row

vector 𝑝𝑠 ∈ 𝑅1×𝑛
. Similarly, given a target node 𝑡 , the single target

PPR query is to compute 𝜋 (𝑣, 𝑡) for each 𝑣 ∈ 𝑉 , and the answer of

this query is a column vector 𝑝𝑡 ∈ 𝑅𝑛×1
. Below, we focus mainly

on describing the concepts of single source PPR query, and similar

concepts can also be applied for the single target PPR query.

Let 𝑃 = 𝐷−1𝐴 be the probability transition matrix where each

row is normalized by the weighted degree. The PPR vector 𝑝𝑠 ,

which is PPR value of all nodes w.r.t. the source node 𝑠 , satisfying

the following linear equation

𝑝𝑠 = 𝛼𝑒𝑠 + (1 − 𝛼)𝑝𝑠 · 𝑃, (1)

where 𝑒𝑠 ∈ 𝑅1×𝑛
is the unit vector with 1 on the 𝑠-th element and

0 on others. Then, we have

𝜋 (𝑠, 𝑣) = 𝑝𝑠 [𝑣] = 𝛼 [𝐼 − (1 − 𝛼)𝑃]−1

𝑠𝑣 . (2)

Note that Eq. (1) can be easily reformulated as an equivalent

linear system:

𝑝𝑠 (𝐿 + 𝛽𝐷) = 𝛽𝑒𝑠 , (3)

where 𝛽 = 𝛼/(1 − 𝛼), 𝑝𝑠 = 𝑝𝑠𝐷
−1

and 𝐿 is the Laplacian matrix.

Based on Eq. (3), we can easily derive that

𝜋 (𝑠, 𝑣) = 𝑝𝑠 [𝑣] = [(𝐿 + 𝛽𝐷)−1𝛽𝐷]𝑠𝑣 . (4)

Based on Eq. (4), we define the 𝛽-Laplacian matrix as follows.

Definition 2.1. (𝛽-Laplacian) Given a graph 𝐺 = (𝑉 , 𝐸) and its

Laplacian matrix 𝐿 = 𝐷 − 𝐴. Let 𝛼 be the decay factor of the 𝛼-

random walk. The 𝛽-Laplacian of 𝐺 with parameter 𝛼 is defined as

𝐿𝛽 = (𝛽𝐷)−1 (𝐿 + 𝛽𝐷), where 𝛽 = 𝛼
1−𝛼 .
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Clearly, by Eq. (4) and Definition 2.1, we have 𝜋 (𝑠, 𝑡) = (𝐿−1

𝛽
)𝑠𝑡 .

Thus, answering the PPR queries is equivalent to computing the

inverse of the 𝛽-Laplacian matrix. Clearly, the answer of the single

source query is a row of 𝐿−1

𝛽
, while the answer of the single target

query is a column of 𝐿−1

𝛽
. Computing both the single source and

single target queries are often very costly for large graphs, thus

many approximation algorithms with a relative error guarantee

have been proposed in the literature [32, 46, 49]. Below, we formally

define such two approximate query processing problems which will

be served as two applications of the proposed technique.

Definition 2.2. (Approximate single source PPR query) Given a

relative error threshold 𝜖 > 0, PPR threshold 𝜇 and a source node 𝑠 ,

an approximate single source PPR query problem aims to compute

an estimation 𝜋̃ (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 with 𝜋 (𝑠, 𝑣) ≥ 𝜇 such

that |𝜋̃ (𝑠, 𝑣) − 𝜋 (𝑠, 𝑣) | ≤ 𝜖𝜋 (𝑠, 𝑣) with a low failure probability 𝑝 𝑓 .

Definition 2.3. (Approximate single target PPR query) Given a

relative error threshold 𝜖 > 0, PPR threshold 𝜇 and a target node 𝑡 ,

an approximate single target PPR query problem aims to compute

an estimation 𝜋̃ (𝑣, 𝑡) for each node 𝑣 ∈ 𝑉 with 𝜋 (𝑣, 𝑡) ≥ 𝜇 such

that |𝜋̃ (𝑣, 𝑡) − 𝜋 (𝑣, 𝑡) | ≤ 𝜖𝜋 (𝑣, 𝑡) with a low failure probability 𝑝 𝑓 .

The two parameters, 𝜇 and 𝑝 𝑓 , are used to bound the estimation

quality. The parameter 𝜇 is a threshold such that we can achieve a

relative error guarantee if the exact PPR value exceeds 𝜇; 𝑝 𝑓 is the

failure probability that the algorithm will produce a wrong result.

Following previous studies [32, 46, 49], we set 𝜇 = 1

𝑛 and 𝑝 𝑓 = 1

𝑛
to guarantee a relatively precise result. With these settings, 𝜇 and

𝑝 𝑓 are both small enough to achieve a high estimating precision.

3 PAGERANK MATRIX FOREST THEOREM
The classic matrix tree (or matrix forest) theorem connects the num-

ber of spanning trees (or forests) to the determinant of the Laplacian

matrix of a graph which is perhaps the most well-known result

in spectral graph theory [16]. In this section, we establish a novel

matrix forest theorem, referred to as the PageRank matrix forest

theorem, based on the 𝛽-Laplacian matrix defined in Definition 2.1.

3.1 New matrix forest theorems
For a forest 𝐹 , the weight of 𝐹 is defined as the product of all weights

of edges in 𝐹 , that is𝑤 (𝐹 ) = ∏
𝑒∈𝐹 𝑤𝑒 . For unweighted graphs, we

simply have 𝑤𝑒 = 1, and thus 𝑤 (𝐹 ) is also equal to 1 for all 𝐹 . A

spanning forest of 𝐺 is a forest including all nodes in 𝐺 . Note that

a forest may have several connected tree components. A rooted

spanning forest is a spanning forest where we specify one node as

a root in each connected component. For convenience, if a node

𝑠 belongs to a tree T (each tree is a connected component in the

forest) which has a node 𝑡 as its root, we say that 𝑠 is rooted in 𝑡 in

the spanning forest. We denote 𝜌 (𝐹 ) as the set of roots of 𝐹 . The
following result shows a connection between the determinant of

𝐿𝛽 and the weights of the rooted spanning forests.

Theorem 3.1. (PageRank matrix forest theorem) Given a graph
𝐺 = (𝑉 , 𝐸,𝑊 ), for 𝛽 ∈ (0,∞), the determinant of 𝐿𝛽 is related to the
rooted spanning forests as follows:

𝑑𝑒𝑡 (𝐿𝛽 ) =
1

𝛽𝑛
∏
𝑢∈𝑉

𝑑𝑢

∑︁
𝐹 ∈F

𝑤 (𝐹 )
∏

𝑢∈𝜌 (𝐹 )
𝛽𝑑𝑢 ,

where F denotes the set of all rooted spanning forests in 𝐺 .

Based on Theorem 3.1, we can further develop two matrix forest

theorems based on the minors of the matrix 𝐿𝛽 as follows. Due

to the space limits, all the missing proofs can be found in the full

version of this paper [31].

Theorem 3.2. Given a graph 𝐺 = (𝑉 , 𝐸,𝑊 ), for 𝛽 ∈ (0,∞), the
determinant of the principle minor 𝐿 (𝑣)

𝛽
, obtained by deleting the 𝑣-th

row and column is related to the rooted spanning forests as follows:

𝑑𝑒𝑡 (𝐿 (𝑣)
𝛽
) = 1

𝛽𝑛
∏
𝑢∈𝑉

𝑑𝑢

∑︁
𝐹 ∈F𝑣

𝑤 (𝐹 )
∏

𝑢∈𝜌 (𝐹 )
𝛽𝑑𝑢 ,

where F𝑣 denotes the set of all rooted spanning forests in 𝐺 having 𝑣
as a root.

Theorem 3.3. Given a graph 𝐺 = (𝑉 , 𝐸,𝑊 ), for 𝛽 ∈ (0,∞),
given two distinct vertices 𝑢,𝑣 , the determinant of the minor 𝐿 (𝑢,𝑣)

𝛽
,

obtained by deleting the 𝑢-th row and 𝑣-th column is related to the
rooted spanning forests as follows:

𝑑𝑒𝑡 (𝐿 (𝑢,𝑣)
𝛽
) = 1

𝛽𝑛
∏
𝑖∈𝑉

𝑑𝑖

∑︁
𝐹 ∈F𝑣,𝑢

𝑤 (𝐹 )
∏

𝑢∈𝜌 (𝐹 )
𝛽𝑑𝑢 ,

where F𝑣,𝑢 denotes the set of all rooted spanning forests in𝐺 in which
𝑢 and 𝑣 are in the same connected component and 𝑢 is a root.

Note that although we focus mainly on undirected graphs, all

results presented in the above theorems can be easily extended to

directed graphs by using the concept of diverging forests as used

in the traditional matrix forest theorem for directed graphs [1, 37].

Moreover, the extended results can also be proved by applying the

same arguments based on the Leibniz formula as we used in the

above theorems.

3.2 PPR computation by spanning forests
Recall that 𝜋 (𝑠, 𝑠) = (𝐿−1

𝛽
)𝑠𝑠 and 𝜋 (𝑠, 𝑡) = (𝐿−1

𝛽
)𝑠𝑡 . By Cramer’s

rule, we can obtain 𝜋 (𝑠, 𝑠) = 𝑑𝑒𝑡 (𝐿 (𝑠 )
𝛽
)/𝑑𝑒𝑡 (𝐿𝛽 ) for the diagonal

term and 𝜋 (𝑠, 𝑡) = 𝑑𝑒𝑡 (𝐿 (𝑡,𝑠 )
𝛽
)/𝑑𝑒𝑡 (𝐿𝛽 ) for the non-diagonal term.

Then, by the matrix forest theorem developed in Section 3, we

can compute the PPR values by the weights of spanning forests.

Formally, we have the following results.

Theorem 3.4. Given a graph 𝐺 = (𝑉 , 𝐸), a source node 𝑠 and a
decay factor 𝛼 , the PPR value satisfies

𝜋 (𝑠, 𝑠) =
∑
𝐹 ∈F𝑠 𝑤 (𝐹 )

∏
𝑢∈𝜌 (𝐹 ) 𝛽𝑑𝑢∑

𝐹 ∈F 𝑤 (𝐹 )
∏

𝑢∈𝜌 (𝐹 ) 𝛽𝑑𝑢
,

where 𝛽 = 𝛼/(1 − 𝛼), F is the set of all rooted spanning forests in𝐺 ,
F𝑠 denotes the set of all rooted spanning forests in 𝐺 having 𝑠 as a
root.

Theorem 3.5. Given a graph 𝐺 = (𝑉 , 𝐸), a source node 𝑠 and a
decay factor 𝛼 , the PPR value satisfies

𝜋 (𝑠, 𝑣) =

∑
𝐹 ∈F𝑣,𝑠

𝑤 (𝐹 ) ∏
𝑢∈𝜌 (𝐹 )

𝛽𝑑𝑢∑
𝐹 ∈F

𝑤 (𝐹 ) ∏
𝑢∈𝜌 (𝐹 )

𝛽𝑑𝑢
,



for every node 𝑣 ∈ 𝑉 , where 𝛽 = 𝛼/(1 − 𝛼), F is the set of all rooted
spanning forests in 𝐺 , F𝑣,𝑠 denotes the set of all rooted spanning
forests in 𝐺 in which 𝑠 and 𝑣 are in the same connected component
and 𝑣 is a root.

Based on the above two theorems, 𝜋 (𝑠, 𝑡) equals the proportion
of weights of spanning forests in which 𝑠 is rooted in 𝑡 to weights

of all spanning forests. Clearly, the weights of all spanning forests

form a weight distribution. Let Pr(𝑠 rooted in 𝑡) be the probability
that a node 𝑠 rooted in a node 𝑡 in a spanning forest randomly sam-

pled from such a weight distribution. Then, we have the following

results.

Theorem 3.6. 𝜋 (𝑠, 𝑡) = Pr(𝑠 rooted in 𝑡).

Note that a spanning forest may contain several connected com-

ponents (each tree is a connected component), which forms a parti-

tion of the nodes in the graph. Once a spanning forest 𝐹 is generated,

its corresponding partition 𝜙 is determined. Note that for a fixed

partition 𝜙 of 𝐺 , there may be many spanning forests in 𝐺 that

can produce the partition 𝜙 . Interestedly, we find that if a partition

𝜙 is given, the conditional probability that a node 𝑠 is rooted in a

node 𝑡 (in a random spanning forest) conditioned on 𝜙 , denoted by

𝑃 (s rooted in t|𝜙), can be explicitly determined as follows.

Theorem 3.7. Given a graph 𝐺 = (𝑉 , 𝐸), a spanning forest 𝐹 and
its partition 𝜙 = (𝑉1, · · · ,𝑉𝑘 ). Suppose, without loss of generality,
that 𝑠, 𝑡 are two distinct vertices and 𝑡 belongs to 𝑉𝑡 . Let 𝑑𝑣 be the
weighted degree of node 𝑣 . Then, the conditional probability that 𝑠 is
rooted in 𝑡 conditioned on the partition 𝜙 equals 𝑑𝑡∑

𝑣∈𝑉𝑡 𝑑𝑣
if 𝑠 ∈ 𝑉𝑡 ,

equals 0 otherwise.

Armed with Theorem 3.7, we can further obtain a different

method to compute the PPR values. Let 𝑋𝑠𝑡 be an indicator random

variable that equals 1 if 𝑠 and 𝑡 are contained in the same compo-

nent in a random spanning forest, equals 0 otherwise. Then, we

have the following results.

Theorem 3.8. 𝜋 (𝑠, 𝑡) = 𝐸 [ 𝑑𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

𝑋𝑠𝑡 ].

4 SAMPLING SPANNING FORESTS
Note that by Theorem 3.6, we can estimate the PPR values via

sampling spanning forests. Specifically, if we can sample spanning

forests according to its weights, that is, 𝑃 (𝐹 ) ∝ 𝑤 (𝐹 )∏𝑢∈𝜌 (𝐹 ) 𝛽𝑑𝑢 ,
then an unbiased estimator of 𝜋 (𝑠, 𝑡) can be easily derived. For

example, suppose that we have drawn 𝑁 random spanning forests.

If 𝑛 of which has a component such that 𝑠 is rooted in 𝑡 , then we

can estimate 𝜋 (𝑠, 𝑡) as 𝑛
𝑁
.

The remaining question is how can we sample spanning forests

from such a weight distribution 𝑃 (𝐹 )? To solve this problem, we

propose a loop-erased 𝛼-random walk approach to sample random

spanning forests based on the weight distribution 𝑃 (𝐹 ). Our tech-
nique is a nontrivial extension of the classic Wilson algorithm for

sampling spanning trees on graphs [48].

4.1 The loop-erased 𝛼-random walk
The loop-erased 𝛼-random walk does the same thing as the tradi-

tional 𝛼-random walk, but erasing all loops in the random walk
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Figure 1: A random walk trajectory 𝛾 = (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1, 𝑣4, 𝑣6)
and its loop-erased trajectory 𝐿𝐸 (𝛾) = (𝑣1, 𝑣4, 𝑣6)
trajectory. Below, we first discuss the concept of the traditional

loop-erased random walk as introduced in [48].

Given a graph 𝐺 and a random walk trajectory 𝛾 = (𝑣1, · · · , 𝑣𝑙 )
on𝐺 , we define the loop-erased trajectory as 𝐿𝐸 (𝛾) = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗 )
by deleting all loops in 𝛾 . Formally, 𝑖 𝑗 is defined by the following

inductive procedure: 𝑖1 = 1 and 𝑖 𝑗+1 =𝑚𝑎𝑥{𝑖 |𝑣𝑖 = 𝑣𝑖 𝑗 } + 1. Suppose

that 𝑖 𝑗 is the max index by the above definition. Then, 𝐿𝐸 (𝛾) con-
tains 𝑖 𝑗 vertices and 𝑖 𝑗 −1 directed edges. Loop-erased random walk

is also self-avoiding; it will terminate when it hits the former tra-

jectories. Initially, we set a node as a root and stop the first random

walk when we hit the root. For example, in Fig. 1, suppose that 𝑣6

is the root, and there is a random walk 𝛾 = (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1, 𝑣4, 𝑣6)
stopping when it hits 𝑣6. Then, its loop-erased trajectory is 𝐿𝐸 (𝛾) =
(𝑣1, 𝑣4, 𝑣6), by erasing the loop (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1). The process of eras-
ing loops can be efficiently implemented by recording the next node

in the random walk procedure. When a random walk stops, we

retrace the trajectory, by starting from the first node, walking to

the recorded next node until hitting the former trajectory. Note that

the next node may be re-written many times, but after retracing it

stores a unique next node in the final loop-erased trajectory.

The following results can be easily derived from [36].

Theorem 4.1. Let 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗 ) be the final random walk
trajectory after erasing loops. Denote by the former trajectory set Δ0

and let Δ𝑘 = Δ0 ∪ {𝑣1, · · · , 𝑣𝑘 }. We define 𝑤 (𝛾) = ∏𝑘
𝑖=1

𝑤𝑖𝑘−1,𝑖𝑘 .
Then, the probability that 𝛾 is produced is

Pr(Γ = 𝛾) = 𝑤 (𝛾)𝑑𝑒𝑡 (𝐿
Δ𝑘 )

𝑑𝑒𝑡 (𝐿Δ0 )
,

where 𝐿 = 𝐷 −𝐴 is the Laplacian matrix.

The loop-erased 𝛼-random walk is a nontrivial extension of the

traditional loop-erased random walk. At each step, the loop-erased

𝛼-random walk has a probability 𝛼 to stop. Suppose that it stops at

a node 𝑢, then 𝑢 is marked as a root. Note that for the loop-erased

𝛼-random walk, each loop-erased trajectory contains a root node

when the 𝛼-random walk stops. We can derive the probability that

a loop-erased trajectory 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗 ) is generated when the

loop-erased 𝛼-random walk stops at 𝑣𝑖 𝑗 .

Theorem 4.2. Let 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗 ) be a loop-erased trajectory
generated by a loop-erased 𝛼-random walk which stops at 𝑣𝑖 𝑗 . Denote
by the former trajectory set Δ0, and let Δ𝑘 = Δ0 ∪ {𝑣1, · · · , 𝑣𝑘 }. We
define𝑤 (𝛾) = ∏𝑘

𝑖=1
𝑤𝑖𝑘−1,𝑖𝑘 . Then the probability that 𝛾 is produced

is

Pr(Γ = 𝛾) = 𝛽𝑑𝑣𝑗
𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷)Δ𝑘 )
𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷)Δ0 )

𝑤 (𝛾) .

4.2 Algorithm for sampling spanning forests
Here we present our algorithm for sampling spanning forests. The

intuition is that by iteratively performing loop-erased 𝛼-random



Algorithm 1: Loop-erased 𝛼-random walk sampling

Input: Graph𝐺 = (𝑉 , 𝐸 ) , a decay factor 𝛼
Output: 𝑅𝑜𝑜𝑡 [𝑢 ] for all𝑢 ∈ 𝑉

1 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢 ] ← −1, 𝑅𝑜𝑜𝑡 [𝑢 ] = −1 for𝑢 ∈ 𝑉 ;

2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛 ) of𝑉 ;

3 for 𝑖 = 1 : 𝑛 do
4 𝑢 = 𝑣𝑖 ;

5 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] do
6 if 𝑟𝑎𝑛𝑑 ( ) < 𝛼 then
7 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢 ] ← 𝑢;

8 else
9 𝑁𝑒𝑥𝑡 [𝑢 ] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢 ) ;

10 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];

11 𝑟 ← 𝑅𝑜𝑜𝑡 [𝑢 ],𝑢 ← 𝑣𝑖 ;

12 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] do
13 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢 ] ← 𝑟 ;

14 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];

15 return 𝑅𝑜𝑜𝑡 [𝑢 ] for all𝑢 ∈ 𝑉 ;

walks until all nodes in 𝐺 are traveled, the trajectory exactly con-

structs a rooted spanning forest. We will see that the probability

of each spanning forest 𝐹 generated by our algorithm is exactly

proportional to its weights, i.e., Pr(𝐹 ) ∝ 𝑤 (𝐹 )∏𝑢∈𝜌 (𝐹 ) 𝛽𝑑𝑢 .
The implementation details of the loop-erased 𝛼-random walk

based sampling algorithm is outlined in Algorithm 1, which is an

extension of the classic Wilson algorithm [48]. Specifically, Algo-

rithm 1 starts by initializing an empty set 𝐹 . We use a bool vector

𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 to record whether node 𝑢 has been added into 𝐹 or not,

a vector 𝑁𝑒𝑥𝑡 to record the next node in random walk step, and a

vector 𝑅𝑜𝑜𝑡 to record the root of each node in the sampled span-

ning forest. The three vectors are initialized as 𝑓 𝑎𝑙𝑠𝑒 , −1 and −1

respectively (Line 1). Then, the loop-erased 𝛼-random walks are

performed iteratively from a node 𝑢 following a pre-fixed node

ordering, and the resulting loop-erased trajectory is added into 𝐹

until all nodes are covered (Line 3-14). Specifically, in each step,

the random walk will stop in two cases, either (1) terminates at

the current node with probability 𝛼 (Line 6-7), or (2) terminates

when hitting the former trajectories maintained by 𝐹 (Line 5). If

the loop-erased 𝛼-random walk stops with the first case, the vertex

𝑢 is assigned as a root and added into 𝐹 (Line 7). After the random

walk stops, we retrace the walk by the 𝑁𝑒𝑥𝑡 array, and add the

loop-erased trajectory into 𝐹 (Line 13-14). The algorithm terminates

when all nodes are processed (Line 3), and 𝐹 is returned as a rooted

spanning forest sampled from the weight distribution (Line 15).

Note that since we only use the root information of the sampled

spanning forest, it suffices to return the 𝑅𝑜𝑜𝑡 vector to represent a

rooted spanning forest.

Theorem 4.3. Let 𝜌 (𝐹 ) be the root set of a rooted spanning forest 𝐹 .
Each 𝐹 of 𝐺 is sampled by Algorithm 1 with probability proportional
to𝑤 (𝐹 )∏𝜌 (𝐹 ) 𝛽𝑑𝑢 , that is

Pr(𝛾 = 𝐹 ) =
∏

𝑢∈𝜌 (𝐹 )
𝛽𝑑𝑢 ·

𝑤 (𝐹 )
𝑑𝑒𝑡 (𝐿 + 𝛽𝐷) ∝ 𝑤 (𝐹 )

∏
𝑢∈𝜌 (𝐹 )

𝛽𝑑𝑢 .

Complexity anlaysis. The time complexity of Algorithm 1 can

be derived by analyzing the number of operations on the 𝑁𝑒𝑥𝑡

array (Line 10). For the loop-erased random walk, when a loop

is generated, the 𝑁𝑒𝑥𝑡 value of a node will be revised. The total

number of random walk steps is mainly determined by the total

number of revision of the 𝑁𝑒𝑥𝑡 array in Line 10, because the cost

spent in the retrace process (Line 11-14) is dominated by the cost

-1.0 -0.5 0 0.5 1.0
0

0.01

0.02

0.03

0.04

0.05

pd
f

(a) Youtube (distribution of eigenvalues)

-1.0 -0.5 0 0.5 1.0
0

0.02

0.04

0.06

pd
f

(b) Pokec (distribution of eigenvalues)

1.4M

1.6M

1.8M

2.0M

10
-1

10
-2

10
-3

10
-4

10
-5

τ

α

(c) Youtube

1.7M

1.8M

1.9M

10
-1

10
-2

10
-3

10
-4

10
-5

τ

α

(d) Pokec

Figure 2: The distribution of eigenvalues of the matrix 𝑃

(𝑃 = 𝐷−1𝐴) and the results of 𝜏 with varying 𝛼
taken by the random walk process (Line 4-10). Note that the ex-

pected number of revision of the 𝑁𝑒𝑥𝑡 array in Line 10 equals the

sum of the expected number of visits of each node in the entire

𝛼-loop erased walk process, which is denoted by 𝜏 . As a result, the

time complexity of Algorithm 1 is 𝑂 (𝜏). Below, we analyze the the
expected number of visits for each node in the 𝛼-loop erased walk

process.

Suppose that 𝑣1 is the first node in the pre-fixed node ordering.

Then, the expected number of visits to 𝑣1 is given by
1

𝛼 𝜋 (𝑣1, 𝑣1),
which can be derived by the power expansion

∑∞
𝑘=0
(1 − 𝛼)𝑘𝑃𝑘 𝑣1,𝑣1

(𝑃 = 𝐷−1𝐴 is the probability transition matrix). In each step 𝑘 , the

expected probability mass that the 𝛼-random walk passes through

𝑣1 is (1 − 𝛼)𝑘𝑃𝑘𝑣1,𝑣1

, if the random walk does not stop. After that,

the 𝛼-loop erased walk will no longer pass through 𝑣1. Further-

more, the most important property of the loop-erased walk is

that the node ordering is irrelevant to the final result [48]. That

is, any node can be the first node and the final trajectory main-

tains the same distribution [48]. As a result, during the whole

𝛼-loop erased walk process, the expected number of visits to a

node 𝑢 is
1

𝛼 𝜋 (𝑢,𝑢). By summing over all nodes, we can obtain

𝜏 = 1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢). Note that since 𝜋 (𝑢,𝑢) = ∑∞

𝑘=0
𝛼 (1 − 𝛼)𝑘𝑃𝑘𝑢𝑢 ,

we have 𝜏 =
∑
𝑢∈𝑉 (

∑∞
𝑘=0
(1 − 𝛼)𝑘𝑃𝑘𝑢𝑢 ). The following lemma show

that 𝜏 is closely related to the spectrum of the probability transition

matrix 𝑃 (𝑃 = 𝐷−1𝐴).

Lemma 4.4. Let 1 = 𝜆1 > 𝜆2 ≥ · · · ≥ 𝜆𝑛 > −1 be the probability
eigenvalues of the transition matrix 𝑃 (𝑃 = 𝐷−1𝐴). Then, we have

𝜏 =

𝑛∑︁
𝑖=1

1

1 − (1 − 𝛼 )𝜆𝑖
. (5)

Armed with Lemma 4.4, we can explain why 𝜏 is insensitive

to 𝛼 as follows. To estimate all nodes’ personalized PageRank val-

ues, traditional 𝛼-random walk based methods need to simulate

𝛼-random walks from all nodes, which takes 𝑂 ( 𝑛𝛼 ) per sample. For

our loop-erased 𝛼-random walk, the total time complexity is 𝑂 (𝜏),
which is related to the spectrum of 𝑃 . There are a large number of

previous studies on the spectrum of transition probability matrix

on real world graphs [18, 21, 22]. Note that 𝜏 is the sum of 𝑛 terms,

each term
1

1−(1−𝛼 )𝜆𝑖 falls in the range ( 1

2−𝛼 ,
1

𝛼 ], because |𝜆𝑖 | < 1.

Therefore, we have 𝜏 < 𝑛
𝛼 . Moreover, we can see that when 𝜆𝑖 is

close to 1,
1

1−(1−𝛼 )𝜆𝑖 is close to
1

𝛼 . When 𝜆𝑖 is close to 0,
1

1−(1−𝛼 )𝜆𝑖
is close to 1, which is independent on 𝛼 . As reported in [18], most of



Algorithm 2: The Forward Push Algorithm

Input: Graph𝐺 , source node 𝑠 , decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥

Output: Reserve 𝑞𝑠 [𝑣 ] and residual 𝑟 [𝑣 ] for all 𝑣 ∈ 𝑉
1 for each𝑢 ∈ 𝑉 do
2 𝑟 [𝑢 ] = 0, 𝑞𝑠 [𝑢 ] = 0;

3 𝑟 [𝑠 ] = 1;

4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢 ] ≥ 𝑑𝑢 · 𝑟𝑚𝑎𝑥 do
5 𝑞𝑠 [𝑢 ] += 𝛼𝑟 [𝑢 ];
6 for each 𝑧 ∈ 𝑁 (𝑢 ) do
7 𝑟 [𝑧 ] += (1 − 𝛼 )𝑤𝑧𝑢𝑟 [𝑢 ]/𝑑𝑢 ;

8 𝑟 [𝑢 ] = 0;

the eigenvalues of 𝑃 in real-world graphs are concentrated around 0.

That is to say, most terms in Eq. (5) are independent on 𝛼 , thus 𝜏 is

insensitive to 𝛼 in real-world graphs. We also conduct experiments

to compute the spectrum of 𝑃 on 7 real world graphs (see Table 1)

using the method proposed in [18]. The results on Youtube and

Pokec are shown in Fig. 2(a-b). Similar results can also be observed

on the other datasets. As can be seen, the distribution of eigen-

values are indeed concentrated around 0, implying that the time

overhead of Algorithm 1 is insensitive w.r.t. 𝛼 . We also study how

the 𝜏 changes as 𝛼 decreases. As shown in Fig. 2(c-d), 𝜏 increases

smoothly w.r.t. 𝛼 (note that in the horizontal axis, 𝛼 decreases expo-

nentially), which further confirms that our algorithm is insensitive

to 𝛼 .

5 SINGLE SOURCE PPR QUERY
In this section, we apply the proposed techniques to improve the per-

formance of the existing algorithms for answering the single source

PPR query. Below, we first briefly review the forward push algo-

rithm and the state-of-the-art two-stage algorithms which combine

deterministic forward push and 𝛼-randomwalk sampling. Then, we

present our solutions by replacing the traditional 𝛼-random walk

sampling with the proposed loop-erased 𝛼-random walk sampling.

5.1 Existing solutions

The forward push algorithm. The forward push algorithm is an

efficient local method to compute single source PPR vector which

was first proposed in [4]. As shown in Algorithm 2, the forward

push algorithm maintains two vectors, including a reserve vector

𝑞𝑠 (𝑣) and a residual vector 𝑟 (𝑣) for all 𝑣 ∈ 𝑉 . Specifically, a push
procedure (Line 4-8) is applied for each 𝑣 with 𝑟 (𝑣) larger than
𝑑𝑣 · 𝑟𝑚𝑎𝑥 until no such 𝑣 exists. During the entire procedure, the

following invariant is maintained for all 𝑣 ∈ 𝑉 [4]:

𝜋 (𝑠, 𝑣) = 𝑞𝑠 (𝑣) +
∑︁
𝑢∈𝑉

𝑟 (𝑢)𝜋 (𝑢, 𝑣) . (6)

The algorithm runs in𝑂 ( 1

𝛼𝑟𝑚𝑎𝑥
) time. When 𝑟𝑚𝑎𝑥 tends to 0, 𝑞𝑠 (𝑣)

converges to 𝜋 (𝑠, 𝑣). However, a major limitation of the forward

push algorithm is that there is no additive or relative error guarantee

on 𝑞𝑠 (𝑣) for a fixed 𝑟𝑚𝑎𝑥 .

The 𝛼-random walk sampling algorithm. The single source

PPR query can be efficiently estimated by simulating 𝛼-random

walks. The algorithm generates a number of random walks from 𝑠 ,

then counts the fraction of random walks that terminates at 𝑣 as

an estimation of 𝜋 (𝑠, 𝑣). The major drawback of this algorithm is

that to obtain a precise estimation, the number of samples can be

very large. According to [7], to guarantee a relative error 𝜖 , it needs

to generate 𝑂 ( 𝑛𝑙𝑜𝑔𝑛
𝜖2
) 𝛼-random walks. As the expected length of

each 𝛼-random walk is
1

𝛼 , the algorithm takes 𝑂 ( 𝑛𝑙𝑜𝑔𝑛
𝛼𝜖2
) time.

Combining forward push and 𝛼-random walk sampling. To
overcome the limitations of the forward push and the 𝛼-random

walk sampling algorithms, Wang et al. [46] proposed a two-stage

algorithm, called FORA, which combines a deterministic forward

push stage and a Monte Carlo stage by sampling 𝛼-random walks.

Let𝑊 =
𝑛𝑙𝑜𝑔𝑛

𝜖2
. To achieve a relative error 𝜖 , FORA first performs

forward push with threshold 𝑟𝑚𝑎𝑥 , and then runs 𝑟 (𝑣)𝑊 random

walks from each node 𝑣 . The total 𝛼-random walks needed can

be bounded by 𝑛𝑙𝑜𝑔𝑛 · 𝑟𝑚𝑎𝑥𝑊 . Then, 𝑟𝑚𝑎𝑥 is set to minimize the

complexity. As a result, FORA reduces the time complexity of the

𝛼-random walk sampling algorithm from 𝑂 ( 𝑛𝑙𝑜𝑔𝑛
𝛼𝜖2
) to 𝑂 ( 𝑛𝑙𝑜𝑔𝑛𝛼𝜖 ).

Recently, ResAcc [32] and SPEEDPPR [49] improves FORA by ac-

celerating the forward push algorithm. In particular, SPEEDPPR
admits a time complexity𝑂 ( 1

𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔
1

𝜖 +
𝑛𝑙𝑜𝑔𝑛
𝛼 ) which is the state-

of-the-art algorithm. However, for all the two-stage algorithms, no

existing optimization technique has been done for the Monte Carlo

stage.

5.2 Our solutions
In this subsection, we present our solutions based on the idea of

replacing traditional 𝛼-random walks with loop-erased 𝛼-random

walks in the state-of-the-art algorithms. We find that implementing

such an idea is nontrivial, and there are two technical challenges

needed to be tackled. Below, we first describe two challenges and

the high-level ideas of our solutions to tackle these challenges.

Challenges and high-level ideas of our solutions. First, recall
that in FORA, the number of 𝛼-random walks needed to sample

from node 𝑢 is 𝑟 (𝑢)𝑊 , which is different for each node. This is

because the threshold used in the forward push algorithm for each

node is different. The high-degree node may admit a very large

residue, thus requires a large number of 𝛼-random walks. The total

number of 𝛼-random walk in FORA can be bounded by 𝑛𝑟𝑚𝑎𝑥𝑊 .

However, in the context of sampling spanning forests using loop-

erased 𝛼-random walks, the number of samples are the same for

all nodes. Suppose that 𝑑𝑚𝑎𝑥 is the largest degree over all nodes.

Then, by applying the Chernoff bound, it requires𝑑𝑚𝑎𝑥𝑟𝑚𝑎𝑥𝑊 loop-

erased 𝛼-random walks, which makes the algorithm inefficient.

To circumvent this issue, we propose a new forward push algo-

rithm called balanced forward push, which adapts the threshold for

each node 𝑢 from 𝑑𝑢𝑟𝑚𝑎𝑥 to 𝑟𝑚𝑎𝑥 . The detailed implementation of

this algorithm can be found in our full version [31]. Although the

balanced forward push algorithm only changes the threshold (com-

pared to the traditional forward push algorithm), it is nontrivial to

analyze its time complexity. Moreover, it is also very challenging

to analyze the number of samples needed in our two-stage PPR

computation algorithm when using such a balanced forward push

as the push stage. We will tackle this by introducing an improved

estimator together with carefully applying the Chernoff bound (see

Theorem 5.3). Our result shows that it is sufficient to sample 𝑟𝑚𝑎𝑥𝑊

random spanning forests without losing theoretical guarantee. Note

that sampling a random spanning forest is roughly equivalent to

draw 𝑛 𝛼-random walk samples. Since sampling a random span-

ning forest by loop-erased 𝛼-random walk is often much faster than



sampling 𝑛 𝛼-random walks, we can achieve significantly speedup

over FORA, as confirmed in our experiments.

Second, to estimate 𝜋 (𝑠, 𝑡), a basic estimator only needs the in-

formation of the spanning forests in which 𝑠 is rooted in 𝑡 based on

Theorem 3.6. Let 𝑋𝑖 be a random variable that represents whether

a node 𝑖 is rooted in a target node 𝑡 in a random spanning forest. It

is easy to verify that random variables 𝑋1, · · · , 𝑋𝑛 are dependent,

which violates the condition of applying Chernoff inequality to

bound the sample size. To tackle this challenge, we propose an

improved estimator based on Theorem 3.8. The key idea of the

improved estimator is based on the so-called conditional Monte

Carlo estimation technique [38], because our spanning forests sam-

pling method can obtain the root probability conditioned on a fixed

partition of the graph. By using the conditional probabilities, we

can reduce the variance of the estimator based on the result of the

total variance formula𝑉𝑎𝑟 [𝑋 ] = 𝑉𝑎𝑟 [𝐸 [𝑋 |𝑌 ]] +𝐸 [𝑉𝑎𝑟 [𝑋 |𝑌 ]], and
𝑉𝑎𝑟 [𝑋 ] > 𝑉𝑎𝑟 [𝐸 [𝑋 |𝑌 ]] since a variance is always non-negative.
More intuitively, compared to the basic estimator, the improved

estimator based on Theorem 3.8 can use much more additional

information of a sampled spanning forest (i.e., the information of

two nodes in the same connected component), instead of only using

the root information as used in the basic estimator, thus can reduce

the variance. Note that such a variance reduction trick can reduce

the number of samples needed for a desired accuracy guarantee.

Moreover, we will show that we are able to bound the sample size

based on such a technique.

The proposed algorithm. Based on the above high-level ideas,

we present our algorithms FORAL and FORALV in Algorithm 3,

which corresponds to the algorithm with the basic estimator and

the improved estimator respectively. The algorithm first invokes

the balanced forward push to obtain the residual 𝑟 (𝑠,𝑢) and reserve

𝑞𝑠 [𝑢] for all 𝑢 ∈ 𝑉 (Lines 1-2). After that, the algorithm sets the

parameters𝑊 and 𝜔 to guarantee the approximate accuracy (Lines

3-4). Then, 𝜔 random spanning forests are sampled independently

by simulating loop-erased 𝛼-random walks to estimate the PPR

values (Lines 5-14). Let 𝐹𝑖 be the 𝑖-th sampled random spanning

forest (Line 7). Then, the estimator is updated in two different

ways, with or without applying the variance reduction technique. In

particular, in FORAL (the algorithm with the basic estimator), 𝑎𝑣 is

computed as the sum over residuals on the subset of the connected

component which 𝑣 belongs to (Line 14). However, in FORALV
(the algorithm with the improved estimator), 𝑎𝑣 is computed by

weighted averaging the residual in that subset according to the

conditional probability (Line 11). Finally, the estimation 𝜋 (𝑠, 𝑣) is
returned for each 𝑣 ∈ 𝑉 as the query result (Line 15).

Note that in Line 1 of Algorithm 3, we can also use the improved

forward push algorithm proposed in [49]. We refer to Algorithm 1

with the improved forward push algorithm as SPEEDL (with a basic
estimator) and SPEEDLV (with an improved estimator) respectively.

Below, we analyze the correctness and sample complexity of the

proposed algorithms.

Analysis of the algorithm. First, we formally define the proposed

estimators. Let 𝑟 (𝑢) be the residual of 𝑢 returned by forward push

algorithm, 𝑉𝑣 be the vertex set that is rooted in the same node as 𝑣 .

Then, to estimate

∑
𝑢∈𝑉 𝑟 (𝑢)𝜋 (𝑢, 𝑣) in Eq. (6), we can define two

Algorithm 3: FORAL (FORALV)
Input: Graph𝐺 = (𝑉 , 𝐸 ) , source node 𝑠 , decay factor 𝛼 , push threshold 𝑟𝑚𝑎𝑥 , relative

error threshold 𝜖 , PPR value threshold 𝜇

Output: Estimate PPR 𝜋 (𝑠, 𝑣) for all 𝑣 ∈ 𝑉
1 Invoke balanced forward push with parameters𝐺 , 𝑠 , 𝛼 and 𝑟𝑚𝑎𝑥 ;

2 Let 𝑟 (𝑠, 𝑣𝑖 ) , 𝜋 (𝑠, 𝑡 ) be the returned residue and reserve for all 𝑣𝑖 ∈ 𝑉 ;

3 Let𝑊 =
(2𝜖/3+2) ·𝑙𝑜𝑔 (2/𝑝𝑓 )

𝜖2 ·𝜇 ;

4 Let𝜔 = ⌈𝑟𝑚𝑎𝑥 ·𝑊 ⌉;
5 for 𝑖 = 1 : 𝜔 do
6 Simulate loop-erased 𝛼-random walks on𝐺 ;

7 Let 𝐹𝑖 be the returned random spanning forest;

8 for each node 𝑡 ∈ 𝑉 do
9 Let𝑉𝑣 be subset of the partition Φ(𝐹𝑖 ) which 𝑣 belongs to;

10 if apply variance reduction then

11 𝑎𝑣 =
𝑑𝑣

∑
𝑢∈𝑉𝑣 𝑟 (𝑢)∑
𝑢∈𝑉𝑣 𝑑𝑢

;

12 else
13 𝑎𝑣 =

∑
𝑢∈𝑉𝑣 𝑟 (𝑢 ) ;

14 𝜋 (𝑠, 𝑣) = 𝜋 (𝑠, 𝑣) + 𝑎𝑣/𝜔 ;

15 return 𝜋 (𝑠, 𝑣) for all 𝑣 ∈ 𝑉 ;

estimators 𝑟 (𝑣) and 𝑟 (𝑣) for all𝑢 ∈ 𝑉 , where 𝑟 (𝑣) ≜ ∑
𝑢∈𝑉𝑣

𝑟 (𝑢) is a
basic estimator and 𝑟 (𝑣) ≜ 𝑑𝑣

∑
𝑢∈𝑉𝑣 𝑟 (𝑢 )∑
𝑢∈𝑉𝑣 𝑑𝑢

is an improved estimator.

Let𝑋𝑠 be an indicator random variable that equals 1 if 𝑠 is rooted

in 𝑡 in a spanning forest, equals 0 otherwise. Then, by Theorem 3.6,

we have 𝐸 [𝑋𝑠 ] = 𝜋 (𝑠, 𝑡). In other words, 𝑟 (𝑣) is an unbiased es-

timator of

∑
𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡), thus the correctness of FORAL and

SPEEDL can be guaranteed.

Let 𝑋𝑠𝑡 be the co-occurrence random variable that equals 1

when 𝑠 and 𝑡 are in the same connected component of a span-

ning forest, equals 0 otherwise. By Theorem 3.8, we have 𝜋 (𝑠, 𝑡) =
𝐸 [ 𝑑𝑡𝑋𝑠𝑡∑

𝑢∈𝑉 𝑑𝑣
]. Let 𝑌 =

∑
𝑣∈𝑉 𝑟 (𝑣) 𝑑𝑡𝑋𝑣𝑡∑

𝑣∈𝑉𝑠 𝑑𝑡
. Then, we can derive that

𝐸 [𝑌 ] = ∑
𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡) by the linearity of expectation. As a con-

sequence, 𝑟 (𝑣) is an unbiased estimator of

∑
𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡), which

guarantees the correctness of FORALV and SPEEDLV.
The following lemma shows that the improved estimator has a

smaller variance compared to the basic estimator.

Lemma 5.1. 𝑉𝑎𝑟 [𝑟 (𝑣)] ≤ 𝑉𝑎𝑟 [𝑟 (𝑣)] for all 𝑣 ∈ 𝑉 .

Note that the relative error of Algorithm 3 with the basic esti-

mator is hard to bound due to the dependency of random variables

𝑋𝑠 . However, the practical performance of our FORAL and SPEEDL
algorithms are comparable to the state-of-the-art algorithms as con-

firmed in our experiments. Interestingly, unlike the basic estimator,

we find that Algorithm 3 with the improved estimator can obtain a

relative error guarantee. For our analysis, we need the following

Chernoff bound [17].

Theorem 5.2. (Chernoff bound) Let 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) be independent
random variables satisfying 𝑋𝑖 ≤ 𝐸 [𝑋𝑖 ] + 𝑀 for 1 ≤ 𝑖 ≤ 𝑛. Let
𝑋 = 1

𝑛𝑟

∑
𝑖=1

𝑋𝑖 . Assume that 𝐸 [𝑋 ] and 𝑉𝑎𝑟 [𝑋 ] be the expectation
and variance of 𝑋 . Then we have

Pr( |𝑋 − 𝐸 [𝑋 ] | ≥ 𝜆) ≤ 2𝑒𝑥𝑝 (− 𝜆2𝑛𝑟

2𝑉𝑎𝑟 [𝑋 ] + 2𝑀𝜆/3 ) .

By the Chernoff bound, we can derive the following theorem.

Theorem 5.3. For any node 𝑡 with 𝜋 (𝑠, 𝑡) > 𝜇, Algorithm 3 re-
turns an approximate PPR value 𝜋 (𝑠, 𝑡) satisfying |𝜋 (𝑠, 𝑡) −𝜋 (𝑠, 𝑡) | ≤
𝜖𝑑𝑡𝜋 (𝑠, 𝑡) with probability at least 1 − 𝑝 𝑓 .

Similar to the time complexity analysis of the forward push

algorithm [4], we can easily derive that the time complexity of our



balanced forward push is 𝑂 ( ¯𝑑
𝛼𝑟𝑚𝑎𝑥

), where ¯𝑑 is the average degree.

It can be further simplified as𝑂 ( log𝑛
𝛼𝑟𝑚𝑎𝑥

) on scale-free graphs when

¯𝑑 =

∑
𝑢∈𝑉 𝑑𝑢
𝑛 = 2𝑚

𝑛 = 𝑂 (log𝑛).

Lemma 5.4. Let ¯𝑑 be the average degree. The time complexity of
the balanced forward push can be bounded by 𝑂 ( ¯𝑑

𝛼𝑟𝑚𝑎𝑥
).

Based on Lemma 5.4, we can analyze the time complexity for all

the proposed methods. In particular, the time costs of Algorithm 3

consist of two parts, the forward push stage and the Monte Carlo

stage. For a fixed 𝑟𝑚𝑎𝑥 , the time complexity of the deterministic

forward push is bounded by 𝑂 ( log𝑛
𝛼𝑟𝑚𝑎𝑥

). The Monte Carlo stage

samples 𝑟𝑚𝑎𝑥𝑊 random spanning forests. The cost of sampling a

spanning forest is 𝜏 ; and the estimation process takes 𝑂 (𝑛) in total,

which is typically lower than 𝜏 . Therefore, the Monte Carlo stage

takes𝑂 (𝑟𝑚𝑎𝑥𝑊𝜏) time. As a result, the total time complexity of Al-

gorithm 3 is𝑂 ( log𝑛
𝛼𝑟𝑚𝑎𝑥

+𝑟𝑚𝑎𝑥𝑊𝜏). This can be minimized by setting

𝑟𝑚𝑎𝑥 = 𝜖√
𝛼𝑛𝜏

, which results in an 𝑂 ( 1

𝜖

√︃
𝑛 log𝑛𝜏

𝛼 ) complexity.

Similarly, for SPEEDL and SPEEDLV, the time costs include two

parts: the time spent for forward push and the time taken for sam-

pling spanning forests. By a similar analysis shown in [49], we

can easily derive that the total time complexity of SPEEDL and

SPEEDLV is𝑂 ( 1

𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔
1

𝜖 + 𝑙𝑜𝑔𝑛𝜏). As can be seen, the time com-

plexity of our algorithms has a weak dependency on the parameter

𝛼 , compared to the complexity of FORA [46] which is𝑂 ( 𝑛𝑙𝑜𝑔𝑛𝛼𝜖 ), and
the complexity of SPEEDPPR [49] which is𝑂 ( 1

𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔
1

𝜖 +
𝑛𝑙𝑜𝑔𝑛
𝛼 ).

Therefore, our algorithms can be much faster than the previous

algorithms when 𝛼 is small, which are also confirmed in our exper-

iments.

5.3 Indexing spanning forests
Note that an optimization of FORA and SPEEDPPR is to pre-compute

𝛼-randomwalks, and thenmaintain the end-node for each𝛼-random

walk as an index. Such index-based methods are called FORA+ [46]

and SPEEDPPR+ [49], respectively. To answer the single source

PPR query, both FORA+ and SPEEDPPR+ can use the index to es-

timate PPR without simulating 𝛼-random walks online. For space

overhead, FORA+ requires 𝑑𝑣/𝜖 𝛼-random walks for each node 𝑣 .

Thus, the total number of 𝛼-random walks is

∑
𝑢∈𝑉 𝑑𝑢/𝜖 = 2𝑚/𝜖 .

The index size of FORA+ can be further bounded by𝑂 ( 𝑛 log𝑛
𝜖 ) with

a relative error 𝜖 , given that𝑚 = 𝑂 (𝑛 log𝑛) on the scale free graphs.

For SPEEDPPR+, it only requires 𝑑𝑣 random walks for each 𝑣 , thus

its space overhead is 𝑂 (𝑛 log𝑛) [49].
Similar to FORA+ and SPEEDPPR+, we can also devise index-

based variants of our online algorithms FORALV+ and SPEEDLV+.
Specifically, we can first generate𝑂 (log𝑛) random spanning forests.

Note that similar to SPEEDPPR+, we can derive that 𝑂 (log𝑛) ran-
dom spanning forests is sufficient to obtain a good estimation ac-

curacy. Then, for each spanning forest, we maintain the root in-

formation for each node as the index. To implement the improved

estimator in Algorithm 3 (Lines 10-11), we further maintains the to-

tal degree information in each connected component of a spanning

forest. The total space overhead of our index is 𝑂 (𝑛 log𝑛). Note
that to estimate PPR, sampling a spanning forest by loop-erased

𝛼-random walk is roughly equal to sampling 𝑛 𝛼-random walks

Algorithm 4: The Backward Push Algorithm

Input: Graph𝐺 , source node 𝑡 , decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥

Output: Reserve 𝑞𝑡 [𝑣 ] and residual 𝑟 [𝑣 ] for all 𝑣 ∈ 𝑉
1 for each𝑢 ∈ 𝑉 do
2 𝑟 [𝑢 ] = 0, 𝑞𝑡 [𝑢 ] = 0

3 𝑟 [𝑡 ] = 1;

4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢 ] ≥ 𝑟𝑚𝑎𝑥 do
5 𝑞𝑠 [𝑢 ] += 𝛼𝑟 [𝑢 ];
6 for each 𝑧 ∈ 𝑁 (𝑢 ) do
7 𝑟 [𝑧 ] += (1 − 𝛼 )𝑤𝑢𝑧𝑟 [𝑢 ]/𝑑𝑤 ;

8 𝑟 [𝑢 ] = 0;

from each node. Because we can get 𝑛 “samples of (𝑖 rooted in 𝑗 )”

for a spanning forest, while for an 𝛼-random walk we only get one

sample, i.e., the end node of the random walk. Thus, the number of

samples needed by our algorithm is around 1/𝑛 times FORA+ and

SPEEDPPR+. Since sampling a spanning forest (𝜏) is much faster

than sampling 𝑛 𝛼-random walks (
𝑛
𝛼 ) (especially for a small 𝛼),

the index construction time of our algorithm is much lower than

FORA+ and SPEEDPPR+, as confirmed in our experiments. As a

result, compared to FORA+ and SPEEDPPR+, the key advantage of

our index-based methods is that they can significantly save index-

building time especially when 𝛼 is small (e.g. 𝛼 = 0.01), which is

also confirmed in our experiments.

6 SINGLE TARGET PPR QUERY
6.1 Existing solutions

Backward push. The backward push algorithm is an analogy

of the forward push algorithm [3]. As shown in Algorithm 4, it

also maintains two vectors reserve 𝑞𝑡 (𝑣) and residual 𝑟 (𝑣). Then,
a slightly different push procedure is applied for each node with

𝑟 (𝑣) > 𝑟𝑚𝑎𝑥 , until there is no node meeting 𝑟 (𝑣) > 𝑟𝑚𝑎𝑥 (Lines

4-8). The following invariant is maintained during the backward

push process:

𝜋 (𝑣, 𝑡) = 𝑞𝑡 [𝑣] +
∑︁
𝑢∈𝑉

𝜋 (𝑣,𝑢)𝑟 (𝑢) . (7)

Suppose that a push operation consumes time 𝑐𝑝𝑢𝑠ℎ , which is

roughly 𝑂 (log𝑛) in an average case [3], the algorithm runs in

𝑂 ( 𝜋 (𝑡 )𝑐𝑝𝑢𝑠ℎ𝛼𝑟𝑚𝑎𝑥
) time for a target node 𝑡 . Unlike the forward push

algorithm, the backward push algorithm can guarantee an additive

error [3].

Randomized backward push. The randomized backward push

algorithm introduces a sampling procedure into Algorithm 4 [43].

Specifically, in each push operation, a node sends residuals only

to a small fraction of its randomly sampled neighbors, thus it can

improve the efficiency. The time complexity of this algorithm is

( 𝑛𝜋 (𝑡 )𝛼𝜖 ) for a relative error 𝜖 . The limitation of this algorithm is that

it needs to take additional cost for sampling in each push operation.

Moreover, its time complexity still depends on 𝛼 .

6.2 The proposed algorithm
Here we develop two two-stage algorithms to answer the single

target PPR query based on backward push and the proposed ran-

dom forests sampling technique. Compared to the algorithms for

processing single source PPR query, there are two differences in

designing an algorithm for answering the single target PPR query.



First, the time complexity of the backward push algorithm depends

on 𝜋 (𝑡) of the target node 𝑡 and it varies heavily over all nodes. For

nodes with small 𝜋 (𝑡) (the low-degree nodes often have a small

𝜋 (𝑡)), the backward push procedure terminates very fast. Conse-

quently, there is no need to apply any sampling technique to speed

up the algorithm for those nodes. For nodes with large 𝜋 (𝑡) (the
high-degree nodes often have a large 𝜋 (𝑡)), the backward push

procedure often takes a long time especially when 𝛼 is small. There-

fore, in this case, we can devise two-stage algorithms based on

backward push and sampling random spanning forests. Second,

unlike the forward push algorithm used in the single source PPR

query problem, an additive error 𝑟𝑚𝑎𝑥 can be guaranteed by the

backward push algorithm. To achieve a relative error, we can set

𝑟𝑚𝑎𝑥 as
𝜖
𝑛 , resulting in that the time complexity of the backward

push is 𝑂 ( 𝑛𝜋 (𝑡 )𝑐𝑝𝑢𝑠ℎ𝛼𝜖 ).
Implementation details. The pseudo code of our algorithms is

shown in Algorithm 5. Algorithm 5 includes two stages includ-

ing deterministic backward push and sampling random spanning

forests. First, Algorithm 5 performs backward push to compute the

residual and reserve for each node (Lines 1-2). Then, Algorithm 5

simulates the loop-erased 𝛼-random walk technique to sample

random spanning forests (Lines 5-14). Similar to Algorithm 3, Algo-

rithm 5 can also use the basic estimating technique (Lines 10-11)

and the improved estimating technique (Lines 12-13) to achieve

unbiased estimations of PPR values. For convenience, Algorithm 5

with the basic estimator and the improved estimator are referred

to as BACKL and BACKLV respectively.

Analysis of the algorithm. For a node 𝑣 , let 𝑋𝑢 be an indicator

random variable that equals 1 if 𝑣 is rooted in 𝑢, equals 0 other-

wise. Let 𝑋𝑠𝑡 be the co-occurrence random variable that equals

1 when 𝑠 and 𝑡 are in the same connected component of a span-

ning forest, equals 0 otherwise. 𝑌1 =
∑
𝑢∈𝑉 𝑟 (𝑢)𝑋𝑢 for BACKL and

𝑌2 =
∑
𝑢∈𝑉 𝑟 (𝑢)𝑋𝑢𝑣 𝑑𝑢∑

𝑘∈𝑉𝑣 𝑑𝑘
for BACKLV. Similar to our previous

analysis for the single source PPR query, we can easily derive that

𝐸 [𝑌1] = 𝐸 [𝑌2] =
∑

𝑢∈𝑉
𝜋 (𝑣,𝑢)𝑟 (𝑢). Therefore, the variable 𝑎𝑣 used in

BACKL and BACKLV is an unbiased estimator of

∑
𝑢∈𝑉

𝜋 (𝑣,𝑢)𝑟 (𝑢).

Below, we apply the Chernoff bound to analyze the relative error

guarantee of our algorithms.

Theorem 6.1. For any node 𝑣 with 𝜋 (𝑣, 𝑡) > 𝜇, both BACKL
and BACKLV return an approximate PPR value 𝜋 (𝑣, 𝑡) satisfying
|𝜋 (𝑣, 𝑡) − 𝜋 (𝑣, 𝑡) | ≤ 𝜖𝜋 (𝑣, 𝑡) with probability at least 1 − 𝑝 𝑓 .

Note that although both BACKL and BACKLV can guarantee the

same relative error as shown in Theorem 6.1, BACKLV has a smaller

variance based on the improved estimating technique. Therefore,

we focus mainly on the BACKLV algorithm in the remaining of

this paper. The time complexity of BACKLV for a target node 𝑡

consists of two parts. In the backward push stage, BACKLV takes

𝑂 ( 𝑐𝑝𝑢𝑠ℎ𝜋 (𝑡 )𝛼𝑟𝑚𝑎𝑥
) time, while in the Monte Carlo stage, BACKLV needs

to sampling 𝑟𝑚𝑎𝑥𝑊 spanning forests which consumes𝑂 (𝑟𝑚𝑎𝑥𝑊𝜏)
time in total. Thus, the time complexity ofBACKLV is𝑂 ( 𝑐𝑝𝑢𝑠ℎ𝜋 (𝑡 )𝛼𝑟𝑚𝑎𝑥

+

𝑟𝑚𝑎𝑥𝑊𝜏), which can be minimized to𝑂 ( 1

𝜖

√︃
𝑐𝑝𝑢𝑠ℎ𝑛𝑙𝑜𝑔𝑛𝜏

𝛼 ) by setting
an appropriate 𝑟𝑚𝑎𝑥 .

Algorithm 5: BACKL (BACKLV)
Input: Graph𝐺 = (𝑉 , 𝐸 ) , target node 𝑡 , decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥 , relative error

threshold 𝜖 , PPR value threshold 𝜇

Output: The estimated PPR 𝜋 (𝑣, 𝑡 ) for all 𝑣 ∈ 𝑉
1 Invoke backward push with input parameter𝐺 , 𝑡 , 𝛼 and 𝑟𝑚𝑎𝑥 ;

2 Let 𝑟 (𝑣) , 𝜋 (𝑣, 𝑡 ) be the returned residue and reserve for all 𝑣 ∈ 𝑉 ;

3 Let𝑊 =
(2𝜖/3+2) ·𝑙𝑜𝑔 (2/𝑝𝑓 )

𝜖2 ·𝜇 ;

4 Let𝜔 = ⌈𝑟𝑚𝑎𝑥 ·𝑊 ⌉;
5 for 𝑖 = 1 : 𝜔 do
6 Simulate a loop-erased walk on𝐺 ;

7 Let 𝐹𝑖 be the returned random spanning forests;

8 for each node 𝑣 ∈ 𝑉 do
9 Let𝑉𝑡 be subset of the partition Φ(𝐹𝑖 ) which 𝑡 belongs to and the root is𝑢;

10 if apply variance reduction then

11 𝑎𝑣 =

∑
𝑢∈𝑉𝑡 𝑟 (𝑢)𝑑𝑢∑

𝑢∈𝑉𝑡 𝑑𝑢
;

12 else
13 𝑎𝑣 = 𝑟 (𝑢 ) ;
14 𝜋 (𝑣, 𝑡 ) = 𝜋 (𝑣, 𝑡 ) + 𝑎𝑣/𝜔 ;

15 return 𝜋 (𝑣, 𝑡 ) for all 𝑣 ∈ 𝑉 ;

Table 1: Datasets
Type Dataset 𝑛 𝑚 ¯𝑑

Youtube 1,134,890 2,987,624 5.27

unweighted Pokec 1,632,803 22,301,964 27.32

graphs LiveJournal 4,846,609 42,851,237 17.68

Orkut 3,072,441 117,185,083 76.28

Twitter 41,652,230 1,202,513,046 57.74

weighted DBLP 1,824,701 8,344,615 32.32

graphs StackOverflow 2,584,164 28,142,395 37.02

7 EXPERIMENTS
7.1 Experimental setup

Datasets and query sets. We use 5 real-life datasets including

Youtube, Pokec, LiveJournal, Orkut and Twitter, which are widely

used in previous studies [32, 43, 46, 49]. We also include 2 real-life

general weighted graphs DBLP and StackOverflow. Specifically,
DBLP is a collaboration network where each node represents an

author, each edge represents collaboration relationship and the

edge weight is the number of co-authored papers. StackOverflow is

a user interaction network from the StackExchange site. Each node

represents a user, each edge denotes an interaction relationship and

the edge weight is the number of user interactions. The detailed

statistics of these datasets are summarized in Table 1. All these

datasets can be obtained from [30]. For the single source query

problem, as used in [46], we perform queries using 50 source nodes

generated uniformly at random for all competitors and take the

average query time as the final result. For the single target query,

the query time is highly dependent on the chosen target node. For

the low-degree nodes, it terminates fast by only applying backward

push, while for the high-degree nodes, it spends a long time for the

backward push such that sampling technique is necessary in this

case. We perform queries on 50 target nodes generated uniformly

at random from the top 10% highest degree nodes and again take

the average query time as the final result.

Different algorithms. For single source PPR query, we compare

our algorithms with the state-of-the-art algorithms FORA [46] and

SPEEDPPR [49]. We do not include other previous algorithms in the

experiments because all of them are outperformed by SPEEDPPR
[49]. For FORA and SPEEDPPR, we use their original implementa-

tions in [46] and [49] respectively. For our solutions, we implement

4 different algorithms which are FORAL, FORALV, SPEEDL, and
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Figure 3: Runtime of different algorithms for answering the single source query on unweighted graphs
SPEEDLV. FORAL and FORALV denote Algorithm 3 with the basic

estimator and the improved estimator respectively. Both of them

use the balanced forward push in Line 1 of Algorithm 3. SPEEDL
(SPEEDLV) is an improved algorithm for FORAL (FORALV) which
is equipped with an improved forward push algorithm [49].

For single target PPR query, we compare our two-stage algorithm

with the state-of-the-art algorithms BACK and RBACK. BACK is

the backward push algorithmwhich can guarantee an additive error

𝜖 . To achieve a relative error, we only need to set the threshold

as 𝜖/𝑛 for BACK. RBACK [43] is the randomized backward push

which can prune nodes with small residues in each push operation.

However, RBACK needs to take additional time to preform random

sampling. We implement BACK and RBACK by ourselves, as no

available implementation of these algorithms are provided. For our

algorithm, we implement BACKLV which is Algorithm 5 with an

improved estimator. Note that since BACKL is clearly worse than

BACKLV, we did not implement BACKL in our experiments.

Parameters. Since we focus mainly on small 𝛼 , we set the pa-

rameter 𝛼 = 0.01 in our experiments. Moreover, many existing

PPR-based graph mining algorithms often work very well when

𝛼 = 0.01 [13, 41, 50]. We will study the performance of our algo-

rithms with varying 𝛼 and also with very small 𝛼 (e.g., 𝛼 = 10
−5
).

In addition, since the parameter 𝛼 is typically set to 0.2 in most

existing algorithms [43, 46, 49], we also consider this parameter

setting for a fair comparison with those baseline algorithms, and the

results can be found in our full version [31]. For the approximate

single source/target query, there is a parameter 𝜖 which controls

the relative error. We set 𝜖 as 0.5 by default; and vary 𝜖 from 0.1 to

0.5.

7.2 Single source query
In this experiment, we compare the performance of different algo-

rithms for answering the single source query. The results on five

unweighted datasets are reported in Fig. 3. For a better understand-

ing of these results, we first focus on comparing the performance of

FORA, FORAL, and FORALV. We observe that compared to FORA,
both FORAL and FORALV obtain around 100× speedups on all

datasets (with 𝛼 = 0.01). FORALV spends slightly more time than

FORAL because it includes an additional computational cost of

the sum over partitions. For large datasets, for example on Twitter,
FORA runs out of 24 hours while both FORAL and FORALV take

only thousands of seconds. In general, the runtime of all algorithms

increase with decreasing 𝜖 , because all algorithms take more time

to achieve a small error.

Second, we compare the runtime of SPEEDPPR, SPEEDL and

SPEEDLV. Note that SPEEDPPR applies an optimized version of

forward push which is often more efficient, but it cannot apply the

theoretical bound to balance the time spent in the Monte Carlo

phase and the forward push phase (as FORA does). Alternatively,
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Figure 4: Comparison of the 𝐿1-error of different algorithms
SPEEDPPR balance the time spent in the two phases based on

an estimation of the 𝛼-random walk time. SPEEDL and SPEEDLV
also adopt a similar idea to balance the time. From Fig. 3, we can

see that SPEEDL is the fastest algorithm among all the methods.

On the largest dataset Twitter, both SPEEDL and SPEEDLV are an

order of magnitude faster than SPEEDPPR. These results confirm
our theoretical analysis that by replacing traditional 𝛼-random

walks with loop-erased 𝛼-random walks can achieve a considerable

speedup (especially for the cases of small 𝛼 values).

To further evaluate the effectiveness of our loop-erased𝛼-random

walk based algorithms, we compare the 𝐿1 errors of different algo-

rithms. Here the 𝐿1 error is deified as

∑
𝑣∈𝑉 |𝜋̃ (𝑠, 𝑣) −𝜋 (𝑠, 𝑣) | for all

𝑣 ∈ 𝑉 , where 𝜋̃ (𝑠, 𝑣) is the personalized PageRank value estimated

by different algorithms and 𝜋 (𝑠, 𝑣) is the exact personalized PageR-

ank value. Note that since both FORA and SPEEDPPR achieve the

same relative error bounds, we focus mainly on comparing FORA,
FORAL, and FORALV to see whether the loop-erased 𝛼-random

walk based algorithms can also achieve a good estimating accu-

racy. Similar results can also be obtained by comparing SPEEDPPR,
SPEEDL, SPEEDLV. Fig. 4 shows the results on LiveJournal and
Orkut. The results on the other datasets are consistent. As can be

seen, FORALV achieves the smallest 𝐿1 errors, followed by FORA
and FORAL. Note that FORAL is worse than FORA, because the
the random variables used in FORAL is dependent. However, af-

ter using our variance reduction technique, the accuracy can be

significantly improved. SPEEDPPR, SPEEDL, and SPEEDLV follow

a similar trend; their 𝐿1-errors are slightly smaller than FORA,
FORAL, and FORALV respectively, because they conduct more de-

terministic computing. These results suggest that our loop-erased

𝛼-random walk based algorithms can achieve a very good estimat-

ing accuracy.

7.3 Index-based method for single source query
In this experiment, we evaluate the performance of different index-

based algorithms. The index-based variants for FORA and SPEEDPPR
are denoted by FORA+ [46] and SPEEDPPR+ [49] respectively. We

implement two index-based variants for our algorithms FORALV
and SPEEDLV, denoted by FORALV+ and SPEEDLV+ respectively,

because FORALV (SPEEDLV) is shown to be better than FORAL
(SPEEDL).
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Figure 7: Runtime of different index-based algorithms
We first compare the index construction time and index size of

different algorithms. Note that both FORA+ and SPEEDPPR+ de-

termine the index size based on theoretical results [46, 49]. FORA+
maintains 𝑂 (𝑛 log𝑛/𝜖) 𝛼-random walks [46], while SPEEDPPR+
stores around 𝑂 (𝑛 log𝑛) 𝛼-random walks [49]. Since the perfor-

mance of sampling 𝑛 𝛼-random walks (from 𝑛 nodes) is similar to

that of sampling a spanning forest, FORALV and SPEEDLV main-

tain 𝑂 (log𝑛/𝜖) and 𝑂 (log𝑛) spanning forests respectively. Fig. 5

shows the index construction time on LiveJournal and Orkut. The
results on other datasets are consistent. As can be seen, SPEEDLV+
achieves the lowest index construction time under all parameter

settings, followed by FORALV+, SPEEDPPR+, and FORA+. More-

over, we can see that SPEEDLV+ is around an order of magnitude

faster than SPEEDPPR+. These results demonstrate that our index-

based algorithms are much more efficient than the state-of-the-art

algorithms to construct the index, which also confirm our analysis

in Section 5.3. Fig. 6 reports the index size of different algorithms on

LiveJournal andOrkut. From Fig. 6, we can see that our index-based

algorithms can achieve similar index size as the state-of-the-art

algorithms. This is because for a spanning forest sample, we need

to store the root for each node, while for a random walk sample,

we only need to store the end node. Thus, although the number

of samples needed by FORALV+ (SPEEDLV+) is around 1/𝑛 times

FORA+ (SPEEDPPR+), the total space costs of them are nearly the

same. Moreover, the space usages of all the index-based algorithms

are comparable w.r.t. the graph size. These results further confirm

that our index-based algorithms are space-efficient.

Second, we evaluate the query processing time of different index-

based algorithms. The results are shown in Fig. 7. As can be seen,

FORALV+ and SPEEDLV+ can achieve similar performance as FORA+
and SPEEDPPR+, respectively. Moreover, we also add the online

algorithms FORALV and SPEEDLV for comparison. We can observe

that all the index-based algorithms are faster than their online ver-

sions. Note that FORALV+ and SPEEDLV+ are slightly slower than

FORA+ and SPEEDPPR+ respectively, because our algorithms takes

additional cost to sum the results over the partitions of random

spanning forests.

In summary, our index-based algorithms can achieve similar

query processing time and similar index size over the state-of-the-

art index-based algorithms. However, our index can be constructed

within much lower time than those of the state-of-the-art algo-

rithms.

7.4 Single target query
In this experiment, we compare the performance of BACK, RBACK,
and BACKLV for answering the single target query. Fig. 8 shows

the runtime of these three algorithms on five datasets. As shown

in Fig. 8, BACKLV is significantly faster than BACK and RBACK
(with 𝛼 = 0.01). In general, BACKLV can achieve 1× ∼ 3× speedups
over BACK on all datsets under most parameter settings. We also

observe that RBACK is worse than BACK. The reason could be that

(1) RBACK needs to use additional computational cost for sampling,

and (2) to achieve a high precision, RBACK needs to set a small

sampling threshold so that its performance is similar to that of

the power method, which is often worse than the backward push

algorithm. These results indicate that for the small 𝛼 case, our

loop-erased 𝛼-random walk based technique can also be useful for

processing the single target query.

7.5 Results on real-life weighted graphs
In all previous experiments, we only consider unweighted graphs (a

special case of weighted graph with all edge weights equaling 1) for

a fair comparison with the state-of-the-art algorithms. In this exper-

iment, we study the performance of different algorithms on general

weighted graphs. To this end, we re-implement all the baselinemeth-

ods as the available implementations in [43, 46, 49] cannot support

general weighted graphs. The results of single source experiments

on DBLP and StackOverflow are shown in Fig.9 and Fig.10. Similar

results can also be observed on the other datasets. In general, the re-

sults on weighted graphs are consistent with our previous results on

unweighted graphs. FORAL and FORALV (SPEEDL and SPEEDLV)
have significantly less query time than FORA (SPEEDPPR). Our
best algorithm SPEEDLV is at least one order of magnitude faster

than the state-of-the-art algorithm (SPEEDPPR). The comparison

of empirical error is also similar to that on unweighted graphs. Our

SPEEDLV is clearly the winner with all parameter settings, and it is

much more accurate than SPEEDPPR. Note that although there is a

𝑑𝑡 term in the error bound of FORALV and SPEEDLV, the practical
error performance is significantly better than that of FORA and

SPEEDPPR as shown in Fig.10. The results of single target experi-

ments are depicted in Fig.11. When 𝛼 = 0.01, BACKLV achieves a

2× speed-up on both datasets, which is consistent with the previous
results on unweighted graphs.

7.6 Results with various query node
distributions

Here we study the effect of query node distributions. To this end, we

consider three different node distributions to study how the degree

of query node affects the query time. Specifically, we independently

sample nodes uniformly from the whole node set, the top 10% high-

degree node set and the top 10% low-degree node set respectively.
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Figure 8: Runtime of different algorithms for answering the single target query on unweighted graphs
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Figure 9: Runtime of different algorithms for answering the
single source query on general weighted graphs
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Figure 10: Comparison of 𝐿1-error for answering the single
source query on general weighted graphs
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Figure 11: Runtime of different algorithms for answering the
single target query on general weighted graphs
In this experiment, we choose the best methods, SPEEDLV and

BACKLV, as two representative methods for single source query

and single target query respectively; the results for other methods

are consistent. To see the distribution of query time, we conduct

experiments on 1000 nodes and use box-plot to show the results.

The results are depicted in Fig.12. As can be seen, the query time

of single source algorithms always have a very small variance.

However, the query time of the single target algorithms are highly

dependent on the node degree; and the query time of low-degree

nodes is significantly lower than that of the high-degree nodes.

For example, on Pokec, it takes around 400𝑠 for high-degree nodes,

while all low-degree nodes take less than 1𝑠 to perform a query.

These results indicate that for single target query, we only need to

perform sampling to improve the query efficiency for high-degree

query nodes, while for low-degree nodes, there is no need to do

sampling.

7.7 Results with very small 𝛼
As discussed before, our algorithms are faster than existing methods

especially when 𝛼 is small. Previously, we only consider the case

when 𝛼 is relatively small (𝛼 = 0.01). In this experiment, we study

the case when 𝛼 is very small. Note that if 𝛼 tends to zero, the single
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Figure 12: Query time distribution of single source query
(SPEEDLV) and single target query (BACKLV). SU denotes sin-
gle source query, choosing nodes uniformly. SH (SL) denotes
single source query, selecting high (low) degree nodes uni-
formly. TU denotes single target query, picking nodes uni-
formly. TH (TL) denotes single target query, choosing high
(low) degree nodes uniformly.
source PPR vector tends to a degree-weighted uniform distribution

𝜋 (𝑠,𝑢) = 𝑑𝑢
2𝑚 and the single target PPR vector tends to a constant

distribution 𝜋 (𝑢, 𝑡) =
𝑑𝑡
2𝑚 for all 𝑢 ∈ 𝑉 . Therefore, the degree-

weighted uniform distribution vector is a very simple baseline for

computing single source PPR vector when 𝛼 is very small. Note that

although the PPR vector is very close to a degree-weighted uniform

distribution when 𝛼 is very small, it can still provide more useful

information than such a degree-weighted uniform distribution for

node ranking and clustering due to the subtly difference between

them [50]. For example, when we consider the degree normalized

vector
𝜋 (𝑠,𝑢 )
𝑑𝑢

, the simple baseline will be degraded as a constant

vector which is indistinguishable for all nodes (1/2𝑚 for all nodes).

However, as shown in [50], the degree-normalized PPR vector can

still produce effective rankings and clusterings even when 𝛼 = 10
−6

.

We vary 𝛼 from 10
−1

to 10
−5
, and use the state-of-the-art deter-

ministic method in [49] to compute the ground-truth of the single

source PPR vector to an 𝐿1-error bound 10
−9
. After that, we cal-

culate the 𝐿1-error between SPEEDLV and the ground-truth PPR

vector, and also compute the 𝐿1-error for the simple baseline. We

randomly sample 50 nodes uniformly and take the average value the

final result. The results on Youtube and Pokec are shown in Fig. 13.

Similar results can also be observed on the other datasets. As can

be seen, the 𝐿1-error of SPEEDLV is at least two orders of magni-

tude lower than that of the baseline method with varying 𝛼 . These

results indicate that even for a very small 𝛼 , our algorithm can still

produce much more accurate results than the baseline method. In

addition, we can see that the 𝐿1-errors of both SPEEDLV and base-

line decrease as 𝛼 decreases. The reason could be that the results

of SPEEDLV, the baseline method, and the ground truth PPR con-

verge to the degree-weighted uniform distribution when 𝛼 is very

small, and thereby the 𝐿1-errors will be small. Fig. 13 also shows

the time overheads for computing the ground truth and the time

consumption by our SPEEDLV algorithm. We can see that the time

costs by our algorithm are much lower than the time overheads
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Figure 13: Results with very small 𝛼 (solid lines denote the
𝐿1-error, and dashed lines represent the runtime)
for computing the ground truth. For a very small 𝛼 (𝛼 ≤ 10

−4
),

SPEEDLV is at least two orders of magnitude faster than the ground

truth computation algorithm [49]. These results indicate that our

SPEEDLV algorithm can achieve a very good trade-off between

accuracy and runtime.

8 RELATEDWORK

PageRank computation. Methods for computing personalized

Page-Rank can be divided into two categories: deterministic algo-

rithms and randomized approximate algorithms. For deterministic

methods, there are many studies that focus on matrix-based power

methods [25, 53]. Based on the power method, many different opti-

mization techniques were proposed. [19, 20] applied the Cheyshev

polynomials to accelerate the convergence rate. BEAR [40] prepro-

cessed the adjacency matrix so that there is a large and easy-to-

invert submatrix and also pre-computed several submatrix required

to form an index. BePI [29] improved BEAR by using the power

method instead of matrix inversion. TPA [52] was also an index-

based iterative method which used PageRank value to approximate

the nodes that are far from the source node. [35] developed a core-

tree decomposition technique to further improve the efficiency of

the power method. Also, there are a large number of local methods

for computing personalized PageRank, notable examples including

the forward push method [4, 10] and the backward push method

[3, 28, 34]. Although much progress has been made, deterministic

methods are still slow for high-precision personalized PageRank

computation.

For approximate methods, most of them are based on Monte

Carlo simulation [7]. The idea of combining Monte Carlo and deter-

ministic push method was first introduced in [33]. Much work fol-

lows this idea to improve different types of personalized PageRank

queries. [44, 46] utilized the two-stage framework, which combines

Monte Carlo and deterministic push, to answer the single source

query. [32] and [49] further improved the single source query algo-

rithm. [45] answered several new queries which aims to find heavy

hitters in a graph based on the two-stage framework. However, in

the Monte Carlo stage, all of the previous studies just simply simu-

late random walks. Unlike these studies, we propose an alternative

method based on sampling of spanning forests which is shown to

be more efficient than the random walk based sampling methods.

Additionally, there also exist a number of algorithms to answer the

top-k personalized PageRank query, which are also based on matrix

operations [23, 25, 29], local methods [24, 27] and Monte Carlo

techniques [8]. Specifically, matrix-based methods are based on the

power method with a given absolute error bound 𝜖𝑎 ; local methods

conduct a local search from the source node while maintaining

lower and upper bounds, and stops the search when the top-𝑘 re-

sults can be obtained by the lower and upper bounds; Monte Carlo

techniques, including BiPPR [33], HubPPR [44] and FORA [46] are

used for approximating the top-k PPR queries, which ensure a rela-

tive error 𝜖𝑟 for any PPR value larger than 1/𝑛, with probability at

least 1 − 1/𝑛. TopPPR [47] is the state-of-the-art algorithm which

combines forward push, backward push and Monte Carlo together

to answer the top-𝑘 query.

Matrix forest theorem and spanning forest sampling. The
Kirchhoff matrix tree theorem is perhaps the most classic result

in spectral graph theory. Such a theorem has been generalized to

spanning forest in early years [1, 11, 12, 39]. Most previous studies

on the matrix forest theorem are based on the matrix 𝐿 + 𝑞𝐼 where
𝑞 is a constant [1]. Unlike the previous studies, we establish a

new PageRank matrix forest theorem based on the 𝛽-Laplacian

matrix (𝐿𝛽 = (𝛽𝐷)−1 (𝐿 + 𝛽𝐷)). We note that Chung and Zhao also

introduced a PageRank matrix forest theorem on undirected graphs

[14, 15]. Their results are mainly based on the classic Cauchy-Binet

formula which are hard to extend to directed graphs. Moreover,

their matrix forest theorem is based on the lazy randomwalk model,

instead of the 𝛽-Laplacian matrix.

The algorithms for sampling spanning trees also have been heav-

ily investigated [2, 26, 48]. The most well-known algorithms include

(1) the Aldous-Broder algorithm [2] which simulates a randomwalk

until the whole graph is covered; and (2) the Wilson algorithm [48]

which simulates loop-erased random walks. Note that the concept

of loop-erased random walk was also studied from the probability

point of view [5, 6, 36]; and it was applied to generate spanning

forests [5, 6] with an extended Wilson algorithm. Such an extended

Wilson algorithm was also used for graph signal processing ap-

plications. [9, 38]. Unlike these work, we develop a loop-erased

𝛼-random walk algorithm to sample spanning forests for personal-

ized PageRank computation.

9 CONCLUSION
In this work, we develop several novel personalized PageRank

matrix-forest theorems which connects the personalized PageRank

values to the weights of spanning forests. Based on this connection,

we propose a new personalized PageRank computation algorithm

that samples spanning forests via simulating loop-erased 𝛼-random

walks on a graph. Compared to the previous algorithms, the pro-

posed algorithm is shown to be more robust w.r.t. the parameter

𝛼 . This enable us to improve the efficiency of the state-of-the-art

algorithms when 𝛼 is small. Specifically, by using our technique, we

can significantly improve the efficiency of the state-of-the-art algo-

rithms for answering two types of personalized PageRank queries,

including single source and single target queries. Extensive experi-

ments on 5 large real-life graphs demonstrate the efficiency of the

proposed algorithms.
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